Theoretical prediction of the coordination number, local composition, and pressure-volume-temperature properties of square-well and square-shoulder fluids.

نویسندگان

  • Jiawen Hu
  • Zhenhao Duan
چکیده

By assuming a Boltzmann distribution for the molecular equilibrium between local and bulk environments, a general model is derived for the prediction of coordination numbers and local compositions of square-well and square-shoulder fluids. The model has no empirical parameter fitted from the data of square-well and square-shoulder fluids, but is valid from the low-density limit to the high-density limit. The applicable width of well or shoulder covers the commonly used range varying from 1.0 to 2.0. The model can accurately predict the coordination numbers of pure square-well and square-shoulder fluids, so the equation of state derived from it is superior to other equations of state based on the existing coordination number models. The model also accurately predicts the local compositions of mixtures in wide ranges of density and size ratio (1.0-8.0), as well as the configuration energy of lattice gases and highly nonideal lattice mixtures. It is remarkable that the model correctly predicts temperature-dependent coordination numbers and local compositions for both equal- and unequal-sized mixtures at close packing, which cannot be predicted by the existing coordination number models. Our derivation demonstrates that the energy parameters in local composition models should represent the potential difference of a molecule between the local and bulk environments, not the pair-interaction potential, and depend on the system conditions and different kinds of pair-interaction parameters. This result is very useful for the development of local composition and activity coefficient models and the mixing rules of equations of state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine

Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...

متن کامل

An Improvement in Thermal and Rheological Properties of Water-based Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT)

Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT) well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially ...

متن کامل

Pressure effects on Ca60Al40 metallic glass superconductors

Theoretical computation of the pressure dependence superconducting state parameters of binary Ca60Al40 is reported using model potential formalism. Explicit expressions have been derived for the volume dependence of the electron–phonon coupling strength λ and the Coulomb pseudopotential μ* considering the variation of Fermi momentum KF and Debye temperature ӨD with volume. Well known Ashcroft’s...

متن کامل

Antioxidant Properties of Ajwain using Square wave, Cyclic voltammetry methods and DPPH method

Ajwain is one of the medicinal plants, which the highest composition is thymol, as a strong antioxidant respect to the obtained chromatograms of GC/MS. The antioxidant activity of the Ajwain is measured by square wave voltammetry method and cyclic voltammetry method and 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) method in at the specific concentrations of 1%, 1.5%, 2% and 2.5% and constant pH. The r...

متن کامل

Heat transfer in MHD square duct flow of nanofluid with discrete heat sources

The effect of thermal and solutal buoyancy induced by a discrete source of heat and mass transfer in a square duct under the influence of magnetic field, especially at the turbulent regime for the first time is reported. Al2O3/water nanofluid is used with constant heat flux from three discrete heat sources. In the present study, the effects of Reynolds number (100 to 3000), particle volume frac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 24  شماره 

صفحات  -

تاریخ انتشار 2005